Entropy-Based Video Steganalysis of Motion Vectors
Abstract
:1. Introduction
2. Motion Compensation in H.264 Compressed Video
2.1. Motion Estimation Optimization
2.1.1. Block Size
2.1.2. Distortion Function
2.1.3. Bits of Motion Vector Difference
3. Proposed Method
3.1. Texture Measure
3.2. Texture Clustering
3.3. Feature Extraction
4. Computer Validation
4.1. Simulation 1
4.2. Simulation 2
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhai, L.; Wang, L.; Ren, Y. Combined and Calibrated Features for Steganalysis of Motion Vector-Based Steganography in H. 264/AVC. In Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, Philadelphia, PA, USA, 20–22 June 2017; pp. 135–146. [Google Scholar]
- Zhang, H.; Cao, Y.; Zhao, X. Motion vector based video steganography with preserved local optimality. In Multimedia Tools and Applications; Springer: New York, NY, USA, 2016; Volume 75, pp. 13503–13519. [Google Scholar]
- Zhang, H.; Cao, Y.; Zhao, X. A Steganalytic Approach to Detect Motion Vector Modification Using Near-Perfect Estimation for Local Optimality. IEEE Trans. Inf. Forensics Secur. 2017, 12, 465–478. [Google Scholar] [CrossRef]
- Aly, H.A. Data hiding in motion vectors of compressed video based on their associated prediction error. IEEE Trans. Inf. Forensics Secur. 2011, 6, 14–18. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, W.; Yu, N.; Zhao, X. Defining embedding distortion Transactions on for motion vector-based video steganography. In Multimedia Tools and Applications; Springer: New York, NY, USA, 2015; Volume 75, pp. 11163–11186. [Google Scholar]
- Cao, Y.; Zhang, H.; Zhao, X.; Yu, H. Video steganography based on optimized motion estimation perturbation. In Proceedings of the 3rd ACM Workshop Information Hiding Multimedia Security, Portland, OR, USA, 17–19 June 2015; pp. 25–31. [Google Scholar]
- Cao, Y.; Zhao, X.; Feng, D.; Sheng, R. Video steganography with perturbed motion estimation. In Proceedings of the International Workshop on Information Hiding, Prague, Czech Republic, 18–20 May 2011; pp. 193–207. [Google Scholar]
- Filler, T.; Judas, J.; Fridrich, J. Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 2011, 6, 920–935. [Google Scholar] [CrossRef]
- Fridrich, J.; Goljan, M.; Lisonek, P.; Soukal, D. Writing on wet paper. IEEE Trans. Sign. Process. 2005, 53, 3923–3935. [Google Scholar] [CrossRef]
- Preetha, T.; Jyothis, V. Adaptive image steganography based on Syndrome-Trellis codes. In Proceedings of the 8th International Conference on Computing, Communication and Networking Technologies, Delhi, India, 3–5 July 2017; pp. 1–6. [Google Scholar]
- Wang, K.; Zhao, H.; Wang, H. Video steganalysis against motion vector-based steganography by adding or subtracting one motion vector value. IEEE Trans. Inf. Forensics Secur. 2014, 9, 741–751. [Google Scholar] [CrossRef]
- Pan, F.; Xiang, L.; Yang, X.-Y.; Guo, Y. Video steganography using motion vector and linear block codes. In Proceedings of the International Conference on Software Engineering and Service Sciences, Beijing, China, 16–18 July 2010; pp. 592–595. [Google Scholar]
- He, X.; Luo, Z. A novel steganographic algorithm based on the motion vector phase. In Proceedings of the International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14 December 2008; Volume 3, pp. 822–825. [Google Scholar]
- Fang, D.-Y.; Chang, L.-W. Data hiding for digital video with phase of motion vector. In Proceedings of the International Symposium on Circuits and Systems, Kos, Greece, 21–24 May 2006; p. 4. [Google Scholar]
- Su, Y.; Zhang, C.; Zhang, C. A video steganalytic algorithm against motion-vector-based steganography. Sign. Process. 2011, 91, 1901–1909. [Google Scholar] [CrossRef]
- Wu, H.T.; Liu, Y.; Huang, J.; Yang, X.Y. Improved steganalysis algorithm against motion vector based video steganography. In Proceedings of the IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014; pp. 5512–5516. [Google Scholar]
- Tasdemir, K.; Kurugollu, F.; Sezer, S. Spatio-Temporal Rich Model-Based Video Steganalysis on Cross Sections of Motion Vector Planes. IEEE Trans. Image Process. 2016, 25, 3316–3328. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cao, Y.; Zhao, X.; Wu, B. Motion vector reversion-based steganalysis revisited. In Proceedings of the International Conference on Signal and Information Processing, Orlando, FL, USA, 14–16 December 2015; pp. 463–467. [Google Scholar]
- Sur, A.; Krishna, S.V.M.; Sahu, N.; Rana, S. Detection of motion vector based video steganography. In Multimedia Tools and Applications; Springer: New York, NY, USA, 2015; Volume 74, pp. 10479–10494. [Google Scholar]
- Gibson, J. Rate Distortion Functions and Rate Distortion Function Lower Bounds for Real-World Sources. Entropy 2017, 19, 604. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, G. Content Adaptive Lagrange Multiplier Selection for Rate-Distortion Optimization in 3-D Wavelet-Based Scalable Video Coding. Entropy 2018, 20, 181. [Google Scholar] [CrossRef]
- Sullivan, G.J.; Wiegand, T. Rate-distortion optimization for video compression. IEEE Sign. Process. Mag. 1998, 15, 74–90. [Google Scholar] [CrossRef]
- Ortega, A.; Ramchandran, K. Rate-distortion methods for image and video compression. IEEE Sign. Process. Mag. 1998, 15, 23–50. [Google Scholar] [CrossRef]
- Tew, Y.; Wong, K.S. An overview of information hiding in H.264/AVC compressed video. IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 305–319. [Google Scholar] [CrossRef]
- Wiegand, T.; Schwarz, H.; Joch, A.; Kossentini, F.; Sullivan, G.J. Rate-constrained coder control and comparison of video coding standards. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 688–703. [Google Scholar] [CrossRef]
- Wiegand, T. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, document ITU-T Rec. H.264/ISO/IEC 14496-10 AVC, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVTG050. 2003. Available online: http://ip.hhi.de/imagecom_G1/assets/pdfs/JVT-G050.pdf (assessed on 14 March 2003).
- Ghanbari, M. Standard Codecs: Image Compression to Advanced Video Coding, 3rd ed.; IET Press: London, UK, 2011. [Google Scholar]
- Gormish, M.J.; Gill, J.T. Computation-rate-distortion in transform coders for image compression. In Proceedings of the SPIE, San Jose, CA, USA, 31 January–5 February 1993; Volume 1903, pp. 146–152. [Google Scholar]
- Qiao, X.; Ji, G.; Zheng, H. A new method of steganalysis based on image entropy. In In Proceedings of the International Conference on Intelligent Computing, Qingdao, China, 21–24 August 2007; pp. 810–815. [Google Scholar]
- Lafferty, P.; Ahmed, F. Texture-based steganalysis: Results for color images. In Proceedings of the Mathematics of Data/Image Coding, Compression, and Encryption VII, with Applications, Denver, CO, USA, 2–6 August 2004; Volume 5561, pp. 145–152. [Google Scholar]
- Liu, S.; Yao, H.; Gao, W. Steganalysis Based on Wavelet Texture Analysis and Neural Network. In Proceedings of the Fifth World Congress on Intelligent Control and Automation, Hangzhou, China, 15–19 June 2004; Volume 5, pp. 4066–4069. [Google Scholar]
- Tang, W.; Li, H.; Luo, W.; Huang, J. Adaptive Steganalysis Based on Embedding Probabilities of Pixels. IEEE Trans. Inf. Forensics Secur. 2016, 11, 734–745. [Google Scholar]
- Buenestado, P.; Acho, L. Image Segmentation Based on Statistical Confidence Intervals. Entropy 2018, 20, 46. [Google Scholar] [CrossRef]
- Bezdec, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. 2016. Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (assessed on 22 December 2016).
- Zhu, S.; Ma, K.-K. A new diamond search algorithm for fast block matching motion estimation. IEEE Trans. Image Process. 2000, 9, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Lin, X.; Chau, L.-P. Hexagon-based search pattern for fast block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 2002, 12, 349–355. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
Embedding Rate | Arijit [19] | Proposed Method | ||
---|---|---|---|---|
AUC | Accuracy | AUC | Accuracy | |
40 bpfs | 0.93 | 85 | 0.999 | 99.8 |
60 bpfs | 0.98 | 93 | 0.999 | 99.86 |
Full | 1 | 99 | 1 | 99.9 |
Steganography | Steganalysis | |||
---|---|---|---|---|
Aoso | IMVRB | NPE | Proposed | |
Aly’s | 67.25 | 66.39 | 78.98 | 79.45 |
Cao’s | 51.27 | 64.08 | 71.79 | 71.05 |
X.H’s | 52.56 | 65.12 | 72.04 | 73.74 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadat, E.S.; Faez, K.; Saffari Pour, M. Entropy-Based Video Steganalysis of Motion Vectors. Entropy 2018, 20, 244. https://doi.org/10.3390/e20040244
Sadat ES, Faez K, Saffari Pour M. Entropy-Based Video Steganalysis of Motion Vectors. Entropy. 2018; 20(4):244. https://doi.org/10.3390/e20040244
Chicago/Turabian StyleSadat, Elaheh Sadat, Karim Faez, and Mohsen Saffari Pour. 2018. "Entropy-Based Video Steganalysis of Motion Vectors" Entropy 20, no. 4: 244. https://doi.org/10.3390/e20040244